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Abstract. In the Byzantine agreement problem, n nodes with possibly
different input values aim to reach agreement on a common value in the
presence of t < n/3 Byzantine nodes which represent arbitrary failures in
the system. This paper introduces a generalization of Byzantine agree-
ment, where the input values of the nodes are preference rankings of
three or more candidates. We show that consensus on preferences, which
is an important question in social choice theory, complements already
known results from Byzantine agreement. In addition, preferential vot-
ing raises new questions about how to approximate consensus vectors.
We propose a deterministic algorithm to solve Byzantine agreement on
rankings under a generalized validity condition, which we call Pareto -
Validity. These results are then extended by considering a special voting
rule which chooses the Kemeny median as the consensus vector. For this
rule, we derive a lower bound on the approximation ratio of the Kemeny
median that can be guaranteed by any deterministic algorithm. We then
provide an algorithm matching this lower bound. To our knowledge, this
is the first non-trivial generalization of multi-valued Byzantine agree-
ment to multiple dimensions which can tolerate a constant fraction of
Byzantine nodes.

Keywords: social choice · Byzantine agreement · Pareto-Validity · dis-
tributed voting · multivalued

1 Introduction

In distributed machine learning, different data is often collected and owned by
different parties, each of which will locally train its own machine learning model.
If a new data item needs to be judged, the parties could collaborate in order to
make a collective decision. As an example, a hospital may be authorized to use
its own collected patient data to train an image recognition model, but not to
share that data with other hospitals because of patient privacy limitations. For
some critical cases the hospitals would still want to collaborate and decide on
the correct diagnosis together.

In order to obtain a robust collective decision, we need to take the following
two aspects into account. On the one hand, it is possible that some of the in-
volved parties experience hardware or software difficulties, or simply play dirty.
Our decision will be robust if we can withstand even Byzantine parties, who
are controlled by a single omnipotent adversary trying to maliciously disturb



2 D. Melnyk et al.

the process. On the other hand, non-Byzantine parties should use all avail-
able information to come up with the best possible decision. In standard multi-
valued Byzantine agreement algorithms, each party will provide only one input,
however, machine learning algorithms usually provide information about the
second-best and third-best guess. For example, when doing image recognition
in medicine the result can be a ranking of possible diagnoses: glioblastoma �
metastasis � . . . � inflammatory. Such rankings convey much more information
than just the top ranked alternative (glioblastoma). While the different honest
parties might completely disagree on the top alternative, the second alterna-
tive might serve as a tie breaker, and we can therefore hope to receive more
meaningful results from the voting process by considering rankings.

In this paper we use social choice theory in order to investigate the most
fair choice among a set of rankings to solve Byzantine agreement on rankings.
In particular, we want to study how robust preferential voting is in a Byzantine
environment. In Section 2, we first focus on some basic properties for voting
rules, and see that not all of them can be satisfied if the parties should reach an
agreement. This is because Byzantine voters are manipulators that modify the
result to make it more favorable to themselves. In the main part of the paper
(Section 5) we then study how well the voting result intended by the correct
(non-Byzantine) voters can be approximated. For this purpose we consider the
Kemeny rule which picks the most central ranking as the voting result. We
will provide an algorithm that approximates the solution of the Kemeny rule
in the presence of Byzantine voters and prove that this algorithm computes
the best possible approximation. We believe our paper will contribute a deeper
understanding of both fault-tolerant distributed systems as well as social choice
theory.

2 Background and Motivation

In search of a fair rule to elect candidates, philosophers and mathematicians
started developing various voting mechanisms and rules already in the beginning
of the 18th century. In the middle of the 20th century, Kenneth Arrow [2, 3] was
one of the first to formalize existing voting rules and analyze possibility and
impossibility results in an axiomatic fashion, thereby introducing the field of
Computational Social Choice. In this section we will show how well Byzantine
agreement connects to voting theory.

We start by considering the special case of n voters voting on only two
candidates c1 and c2. In this setting, each voter (node) ranks the two candidates
such that its preferred candidate (input value) is ranked first. A vote for a
candidate c1 means that the voter strictly prefers c1 to c2, which we here denote
c1 � c2. A central authority then applies a social choice function (SCF) to
a given preference profile in order to determine the winner (decision value),
or set of winners in case of a tie. An SCF should typically strive to satisfy
anonymity, neutrality and positive responsiveness. May’s theorem [27] shows
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that the majority rule is the only voting rule on two candidates that satisfies all
three properties.

Interestingly, most known algorithms for binary Byzantine agreement indi-
rectly exploit the properties of May’s theorem: Some of them make use of leaders
who suggest their decision value to all nodes, e.g., the King and the Queen al-
gorithms [8, 9]. The leader in these algorithms temporarily plays what is known
as a dictator in voting theory. Another type of algorithm, e.g., the shared coin
algorithm in [39], is biased towards one of the outcomes and thus violates neu-
trality. In general we can say that most of the proposed algorithms try to use
the majority value as the decision value if a majority exists, or an arbitrary in-
put value otherwise, see for example [7, 11]. Such settings may satisfy anonymity
and neutrality, but in cases where the correct nodes are undecided, i.e., there
is a tie between the two input values, Byzantine nodes have a large influence
on the majority value. Thus, if a correct node decides to swap two candidates
in its ranking in order to make one of the candidates win, a Byzantine node
can perform an opposite swap in its own ranking and return the profile to the
previous state. This shows that positive responsiveness cannot be satisfied for
these algorithms in the presence of Byzantine nodes.

May’s theorem does however not apply to the general case with more than
two candidates. Moreover, a lot of information is lost when a single winner is
sought. When it comes to preferential voting, social choice theory often wants
not only the input to be rankings, but also the output. This is satisfied by social
welfare functions (SWF) that map a preference profile to a set of consensus
rankings. For an SWF, g, the following three properties are usually considered:

– g is dictatorial if there is one distinguished voter whose input ranking is
chosen as the single consensus ranking

– g is independent of irrelevant alternatives (IIA) if the consensus ranking of
two candidates ci and cj only depends on the relative preference of these
candidates in each voter’s ranking, and not on the ranking of some third
candidate ck

– g is weakly Paretian if it satisfies the weak Pareto condition [31]: for two
candidates ci and cj which are ranked ci � cj by all voters, consensus ranking
has to rank ci � cj as well

Unfortunately, Arrow’s impossibility theorem[2] shows that every SWF on
three or more alternatives that is weakly Paretian and IIA must be dictatorial.
From the viewpoint of Byzantine agreement, an SWF should not be dictatorial
since one does not want a dictator to be a Byzantine node. Consequently, any
reasonable Byzantine agreement protocol must either violate IIA or weak Pareto.
We say that IIA or weak Pareto are satisfied in the Byzantine setting if they
are satisfied with respect to the input rankings of the correct nodes only. Under
this assumption, the IIA condition implies that the consensus ranking should
remain the same if the input of every correct node does not change, no matter
what the Byzantine nodes do. However, a Byzantine node can pretend to be a
correct node but change its ranking in two executions in which the correct nodes
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have the same inputs. This change may lead to a different consensus ranking
and thus violate IIA. For the weak Pareto condition consider the case with two
candidates: if every non-Byzantine voter ranks c1 � c2, the consensus ranking
should also rank c1 � c2. This corresponds to a well-known validity condition
in Byzantine agreement – the All-Same-Validity : If all correct nodes have the
same input value, all correct nodes have to decide on this value. We use the weak
Pareto condition to impose a validity rule on Byzantine agreement on rankings:

Pareto -Validity for any pair of candidates ci and cj : if all correct nodes rank
ci � cj , then the consensus ranking should rank ci � cj as well.

Given m candidates, Pareto -Validity can be viewed as All-Same-Validity ap-
plied on each of the

(
m
2

)
pairs of candidates in a ranking. Note that Byzantine

agreement on a ranking is at least as hard as binary Byzantine agreement: Con-
sider a case where the nodes agree on the ranking of the candidates c3, . . . cm
which they rank last, but not on the two first candidates c1 and c2. Pareto -
Validity is then satisfied for every binary relation which contains at least one of
the candidates c3, . . . cm. Agreement in this case is then reduced to binary Byzan-
tine agreement on the two candidates c1 and c2, under the All-Same-Validity
condition.

There is no straightforward way to apply a binary Byzantine agreement pro-
tocol to solve Byzantine agreement on rankings. This is because, in contrast to
binary relations on two candidates, preference profiles can contain Condorcet
cycles, e.g. tree contradicting binary relations ci � cj , cj � ck and ck � ci which
are each preferred by a majority of nodes. Simply agreeing on each pair of can-
didates can thus lead to a circular decision which does not form a ranking. In
order to get rid of such cycles one could think of applying the quicksort algo-
rithm on the candidates sorted with respect to the majority. This procedure will
however violate Pareto -Validity: Consider a candidate ci that Pareto dominates
candidate cj . Assume that the quicksort algorithm compares both candidates to
some third candidate ck first. Then cj might win against ck and ci might lose,
thus swapping ci and cj in the consensus ranking. This consideration makes the
problem of finding a consensus ranking in the presence of Byzantine nodes rather
an instance of multi-valued agreement, as we discuss in Section 4, which makes
the problem both interesting and challenging.

3 Related Work

Byzantine agreement was first proposed as the Byzantine Generals problem by
Pease, Shostak and Lamport [32, 26]. In these papers the authors showed that
three nodes cannot establish agreement in the presence of one Byzantine node
even if the communication system is synchronous. Given n nodes, it was shown
for the synchronous model that at least t + 1 rounds are required to establish
agreement [20], where t < n/3 is the number of Byzantine nodes in the system;
the corresponding upper bound was provided in [8, 9]. For the asynchronous
model, the FLP impossibility result [21] states that there is no deterministic
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agreement protocol which can tolerate even one Byzantine node. The first ran-
domized algorithm for solving Byzantine agreement proposed in [7] had expected
exponential running time for a constant fraction of Byzantine nodes. Recently,
the authors of [25] claimed that it is possible to establish agreement within
expected polynomial running time using spectral methods.

Byzantine agreement with more than two input values has mostly been con-
sidered in approximate agreement [17, 19], where the input values of the nodes
converge towards some value over rounds. More recent results seek to establish
agreement on a value that makes sense for applications. In [16], the values con-
verge towards a value at most

√
n log n positions away from the median. In [35,

28] an exact algorithm to establish agreement on a value that is at most t/2
positions away from the median or t positions away from a minimum or a maxi-
mum was proposed. In [38, 29, 30], Byzantine agreement was further generalized
to several dimensions. There, the nodes converge to a vector inside the convex
hull of all correct input vectors. In [37, 13] the authors consider voting in Byzan-
tine systems, they do however only focus on single winners that are determined
by applying the plurality rule to the top alternatives of the rankings, a setting
which corresponds to standard Byzantine agreement. All previous approaches for
multiple dimensions struggle to derive an algorithm which either can tolerate a
constant fraction of Byzantine nodes independent on the number of dimensions,
or find a solution that is not trivial.

In social choice theory, Byzantine behavior can be interpreted as manipula-
tion of a ballot in an election, in which the manipulating party has full knowledge
about all votes. Bartholdi et al. [5] defined manipulation as a preference profile
where one single voter can change its ranking such that this voter’s most pre-
ferred candidate wins the election. Groups of voters have also been considered
in this context, but mostly from the perspective of how hard it is for a group of
nodes to manipulate the voting result given a certain voting rule [10, 14]. Other
types of Byzantine behavior have been considered with respect to robustness of
proposed voting rules. In [6], the authors investigate robustness of Borda’s mean
and median in the presence of outlier ballots. In [33], robustness of scoring rules
is considered under arbitrary noise which is described in terms of pairwise swaps
of candidates in the ranking of one voter.

In this paper we will consider the Kemeny rule which was first proposed
in [22, 23]. The corresponding Kemeny median satisfies additional properties to
those presented in Section 2, but it was shown to be NP-hard to compute for
an increasing number of candidates and already for four voters in [4, 18]. At
least three different 2-approximation algorithms for the Kemeny median have
been proposed in [1] and [15]. In [1], the approximation ratio was improved to
4/3 using randomization, and later derandomized in [40]. A good overview over
the Kemeny rule and an extended introduction into social choice theory can be
found in [12].
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4 A Deterministic Algorithm for Pareto -Validity

This section focuses on Byzantine agreement protocols for rankings that sat-
isfy Pareto -Validity. By using a similar idea to single transferable voting[36]
and a multi-valued Byzantine agreement algorithm, a ranking satisfying Pareto -
Validity can be obtained in (m−1) ·(t+1) rounds: In the first t+1 rounds, we let
the voters apply the King algorithm [9] in order to agree on the top candidate.
After this, every node removes this candidate from its ranking. In the next step,
they will agree on the top candidate from the reduced rankings, and so on. While
this procedure is simple, the number of rounds depends not only on the number
of nodes, but also on the number of candidates.

In the following we present a deterministic algorithm which solves this prob-
lem in only t + 1 phases using the same number of messages. We do this by
modifying the King algorithm to broadcast rankings instead of single candidates.
For convenience, we assume that a broadcast operation also includes sending a
message to oneself. In the proposed algorithm, we select t + 1 different nodes
and assign each of them to one of the t+ 1 phases of the algorithm. Such a node
is called the dictator of the corresponding phase. This dictator then suggests its
own, possibly adjusted, ranking to all nodes, which will always be accepted if the
dictator is a correct node. This way, dictators decide on the ranking of all pairs
of candidates which do not satisfy the Pareto -Validity. Algorithm 1 presents this
procedure in pseudocode.

Since we are dealing with rankings, it is not trivial to see that the nodes
always will be able to agree on a proper ranking at the end of the algorithm.
The following lemmas state that the nodes can adjust their rankings in Step 9 of
Algorithm 1 in order to guarantee Pareto -Validity and that the outcome of the
algorithm thus will be a proper ranking. It is easy to see that the algorithm is
correct for t < n/4 Byzantine nodes, since the correct nodes will not be able to
propose binary relations which form a Condorcet cycle in this case. In order to
show that the algorithm can tolerate t < n/3 Byzantine nodes a well, we need
to exploit the fact that no Byzantine node can propose relations that form a
Condorcet cycle at any point of the algorithm.

Lemma 1. There is no Condorcet cycle that can be proposed by the correct nodes
if t < n/3.

Note that by the properties of the King algorithm, no two opposite binary
relations can be proposed in Step 4 simultaneously. Lemma 1 additionally shows
that a Condorcet cycle cannot be proposed in Step 4 and that all proposed pairs
can form a ranking. It remains to be proven that the nodes will always be able
to adjust their rankings to incorporate the proposed pairs.

Lemma 2. In Step 9 a correct node will always be able to incorporate the pro-
posed pairs into its own ranking.

Proof. This is constructed based on the following strategy: Divide the candidates
into two sets. The first set contains all candidates which appear in at least one
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Algorithm 1 Byzantine agreement protocol on rankings (for t < n/3)

Every node v executes the following algorithm
1: for phase 1 to t + 1 do

Communication Round:
2: Broadcast own input ranking rv
3: for all pairs of candidates ci and cj do
4: if ci is ranked above cj in at least n− t rankings then
5: Broadcast “propose ci � cj”
6: end if
7: end for
8: if some “propose ck � cl” received at least t + 1 times then
9: Adjust own ranking rv according to Lemma 2

10: end if
11: if some “propose ck � cl” received at least n− t times then
12: Fix the pair ck � cl
13: end if

Dictator Round:
14: Let node w be the predefined dictator of the current phase
15: The dictator broadcasts its ranking rdictator := rw

Decision Round:
16: if rdictator agrees with rv in all fixed pairs ci � cj from Step 12 then
17: rv := rdictator
18: end if
19: end for
20: Return rv

of the pairs proposed by the t + 1 nodes in Step 9. This set of nodes will be
ranked first. The second set will contain all candidates for which the node has
not received any propose message. These candidates will be ranked second and
will be dominated by all candidates from the first set. Next, we can rank all
candidates in the first set according to the proposed relations, possibly leaving
some pairs of the candidates not ranked. In the last step, all candidates which
have not been ranked in each of the sets can be ranked by choosing binary
relations from the local ranking of the node. This strategy outputs a ranking of
candidates in which all proposed binary relations are satisfied. ut

The next lemma summarizes the correctness results of Algorithm 1 and states
that the consensus ranking will be valid.

Lemma 3. At the end of Algorithm 1 all nodes will have agreed on the same
ranking which additionally satisfies Pareto -Validity.

5 Kemeny Median with Byzantine Nodes

Weakly Paretian voting rules are often not sufficient to pick a fair ranking from
a set of individual preference rankings. In search of the best possible consensus
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ranking we have to add restrictions on the voting rules without violating the
known impossibility results of Arrow [2]. This leads us to majoritarian SWFs, one
of which is the Kemeny rule. In the following we will introduce this rule and use
it to derive a better consensus ranking in the presence of Byzantine nodes. Since
Byzantine nodes have influence on the final ranking, the corresponding solutions
can be qualified with respect to their approximation ratio which we define in
Section 5.1. In Section 5.2, we will derive lower bounds on the approximation
ratio of the Kemeny median in the presence of Byzantine nodes and further
provide a matching upper bound in Section 5.3.

Definition 1 (Kendall’s τ distance [24]). The Kendall’s τ distance measures
the distance between two rankings r and p on candidates c1, . . . , cm by counting
all pairs of candidates on which they disagree:

τ(r, p) , |{(ci, cj) | ci �r cj and cj �p ci}|.

This metric τ on ballots can be extended to a distance function between a ranking
r and a profile P:

τ(r,P) ,
∑
p∈P

τ(r, p).

Definition 2 (Kemeny median). For a given profile P, the Kemeny median
is the ranking r which minimizes τ(r,P).

The Kemeny median satisfies many nice properties and to some extent guaran-
tees that the chosen ranking is “fair”. The most prominent quality is probably
monotonicity : if voters increase a candidate’s preference level, the ranking result
either does not change or the promoted choice increases in overall popularity.
This quality makes the median solution more robust to Byzantine behavior. The
Kemeny rule is also a Condorcet method, it only depends on the number of
voters who prefer one alternative over the other and is reinforcing.

Kendall’s τ distance, which is used in the Kemeny rule, essentially captures
the nature of multidimensionality in our consensus problem. Although it is not
straightforward to properly define dimensions for metric spaces, there exist some
widely used definitions such as the equilateral dimension. The equilateral dimen-
sion is described by the maximum number of points which lie at equal distance
from each other. Using the equilateral dimension makes a lot of sense in many
cases, it is for example not difficult to see that the equilateral dimension of a
d-dimensional Euclidean space is d+ 1. Here we also use the equilateral dimen-
sion in order to argue that by using the Kemeny rule we are actually solving
a multi-dimensional consensus problem. For any m, we can construct rankings
ri, i = 1, . . . , bm/2c at equal distance as follows: ri ranks every candidate j as
the j-th element in the ranking and only swaps the candidates 2i − 1 and 2i.
Any pair of rankings in this construction has the same distance 2 to each other
and the equilateral dimension of Kendall’s τ metric space is therefore at least
bm/2c.
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5.1 Byzantine Setting

The Kemeny median cannot be computed exactly in the presence of Byzantine
nodes since they might suggest rankings which have a large distance to the
Kemeny median of the correct nodes, thus moving the median ranking away
from the actual median. A notion for approximate median rankings is therefore
introduced as follows:

Definition 3 (α-approximation of Kemeny median). Let κ be a Kemeny
median of a preference profile P. An α-approximation of κ is a preference ranking
κα satisfying

τ(κα,P) ≤ α · τ(κ,P)

As an example consider binary agreement (m = 2): Here τ counts the number
of correct nodes who disagree with the consensus value. Any binary Byzantine
agreement algorithm that satisfies All-Same-Validity will also satisfy α < n −
t− 1.

Unlike binary agreement, it is not straightforward to see what a Byzantine
node would choose as its ranking when the Kemeny rule determines the consensus
ranking. Since the input vectors of nodes are rankings, each voter has to propose
a strict order between candidates and the corresponding preference relation is
transitive. A possible strategy for the Byzantine nodes could then be to choose
exactly the opposite ranking of the Kemeny median of all correct nodes. While
this strategy can be shown to be optimal, such a solution is not unique for
most preference profiles. To see this, assume that all correct nodes agree on the
preference ci � cj such that this pair will always belong to the Kemeny median
of the correct rankings. Then, the Byzantine nodes can pick either ci � cj or
cj � ci for their ranking, since this strategy does not have any influence on the
Kemeny median of all rankings. It is therefore difficult for the correct nodes to
detect which of the rankings might have been Byzantine.

5.2 Lower Bounds on the Approximation Ratio

In this section we discuss preference profiles that are vulnerable to Byzantine
nodes. The first case is based on reducing the rankings to binary agreement
and gives the highest approximation ratio for t < n/3. Binary agreement does
however assume that there are two groups of voters who completely disagree in
their preferences. This is somewhat unlikely in practical situations when m is
sufficiently large. In the second case we therefore exclude such binary instances
and provide a lower bound based on Condorcet cycles within a preference profile
which converges to the same value for large m. The approximation ratio usually
depends on the ratio n/t, which will be denoted k for the sake of simplicity.

For our analysis, we represent the preference profile P as a weighted tourna-
ment graph, i.e., a graph where the nodes represent the candidates and weighted
edges represent how many voters prefer one candidate to the other. The sum of
the forward and the backward edges should be equal to the total number of vot-
ers in the corresponding preference profile. The ranking of a node is a directed
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Hamiltonian path following the order of the ranking, and all other edges are de-
rived from the transitivity. For any two candidates we denote the edge between
these candidates a majority edge if its backward edge has a smaller weight. The
backward edge we then call a minority edge. A Kemeny median of a weighted
tournament graph is the ranking that minimizes the sum of the weights of all
backward edges of the graph. Note that rankings restrict the power of Byzantine
nodes in the sense that Byzantine nodes only can send transitive tournament
graphs where every edge has weight 1.

We first consider all possible preference profiles, in which the worst case is
the binary case. This case corresponds to a class of tournament graphs where
the Byzantine nodes can redirect all edges by adding t rankings to the preference
profiles of the correct nodes. Theorem 1 gives a lower bound for the binary case.

Theorem 1. There exists a tournament graph corresponding to a preference
profile for which the Byzantine nodes may change the edge weights such that
no deterministic algorithm can output a ranking which is better than a k

k−2 -
approximation of the Kemeny median of all correct nodes, where k = n/t. For t
close to n/3, this gives a 3-approximation.

Proof. This tournament graph is equivalent to binary agreement. Consider there-
fore one pair of candidates: t Byzantine nodes are only able to change the median,
i.e., the majority edge, between these two candidates if they can swap the ma-
jority and minority edge by supporting the minority edge with their ranking.
Assume the worst case, where the forward and the backward edge both have the
same weight n/2 after the Byzantine nodes have added their preferences. In this
worst case the tournament graph of correct nodes had the weight n/2 for the
majority edge. Since the correct nodes will not be able to determine the actual
majority edge, they might agree on a minority edge with weight n/2− t instead.

The corresponding approximation ratio is then n/2
n/2−t = k

k−2 . This result can be

easily generalized to m candidates by using opposite rankings.

In the following, we present another lower bound using Condorcet cycles
which can result in ambiguous views as well. We start with one directed cycle
formed by three nodes on the tournament graph and assume that every majority
edge has a weight of more than (n+t)/2, thus discarding the possibility to reduce
any pair of forward and backward edges in the tournament graph to binary
agreement. The main difficulty in finding a good example comes from the fact
that not every tournament graph has an underlying preference profile.

Theorem 2. There exists a preference profile containing directed majority cy-
cles in the corresponding tournament graph, for which the Byzantine nodes can
add t rankings such that no deterministic algorithm can output a ranking with a
better approximation ratio to the actual median than k/(k − 2), for m large.

Proof. Considering a tournament graph formed by one directed cycle of can-
didates c1, c2, c3, i.e., a directed cycle formed by majority edges. Assume all
correct nodes receive a view where n−2t−2 nodes prefer c1 to c2, where (c1, c2)
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Fig. 1. Two indistinguishable views on m candidates for directed cycles

We have two views which show the profiles of correct nodes only. The left tournament
graph results from a profile where n−t

2
− 1 nodes choose c1 � c2 � cm � . . . � c3,

n−3t
2
− 1 nodes choose cm � . . . � c3 � c1 � c2 and t + 2 nodes choose c2 � cm �

. . . � c3 � c1. The right tournament graph results from n−3t
2
− 1 nodes choosing

c1 � c2 � cm � . . . � c3, n−t
2
− 1 nodes choosing cm � . . . � c3 � c1 � c2 and

t + 2 nodes choosing c2 � cm � . . . � c3 � c1. If the Byzantine nodes add t profiles
cm � . . . � c3 � c2 � c1 to the left view, and t profiles c2 � c1 � cm � . . . � c3 to the
right view, the resulting profiles become indistinguishable to the correct nodes.

is a majority edge. Then (n + t)/2 + 1 nodes prefer c2 to c3 and (n + t)/2 + 1
nodes prefer c3 to c1. For n > 3t+ 4, the edge (c1, c2) is in the median ranking
of all nodes. Since the edges (c2, c3) and (c3, c1) cannot both be in the median
ranking, the nodes have to decide for one of the rankings. In the worst case, one
of these two edges was supported by all t Byzantine nodes while the other edge
was not supported by any Byzantine node. This leads to two views which are not
distinguishable for the correct nodes, as shown in Figure 1. The approximation
ratio for these views is

n+ t+ 2

n− t+ 2
≈ k + 1

k − 1
<

5

3

An extension to m candidates gives an approximation ratio of

m · n+ 2n+ t+ 2

m · (n− 2t) + 2n− 3t+ 2
≈ k

k − 2

for large m. ut

The received approximation ratio converges to the same approximation ratio
as in the binary case for large m, even though we have excluded the binary
case from the tournaments. This lower bound underlines the fact that Byzantine
agreement on rankings is more complex than binary Byzantine agreement.
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5.3 Algorithm for Kemeny Median Approximation

In this section we present a synchronous algorithm for computing a consensus
median which matches the lower bound on the approximation ratio presented
in the previous section. A simple idea is to use interactive consistency [11, 34]:
For t+ 1 rounds, the nodes exchange all information they have received this far
and after the (t + 1)-st round they compute the Kemeny median from a set of
rankings which they have received often enough. This algorithm guarantees that
the set of rankings will be the same for each node and therefore that all nodes
will decide on the same ranking. The main drawback of interactive consistency is
that it has a large message complexity. The message complexity of this strategy
is in Θ(mnt) which is exponential for t ∈ Θ(n). Also other approaches, such as
agreeing on each ranking upfront require the nodes to reliably broadcast their
rankings at least once, which results in a message complexity of at least O(n3)
(each node has to forward every received ranking to all other nodes).

Instead of exchanging large amounts of information, we present an approach
where we can directly exploit the fact that the Byzantine nodes cannot change
a Kemeny median of the preference profile of the correct nodes by more than a
transitive tournament graph with edge weights t. This strategy is presented in
Algorithm 2.

Algorithm 2 Byzantine agreement for the Kemeny median (for t < n/3)

Every node v executes the following algorithm
1: broadcast own ranking rv
2: compute the Kemeny median of the received preference profile, call it mv

3: apply Algorithm 1 with mv as an input value

Algorithm 2 has the same order of round and message complexity as Algo-
rithm 1 as stated in the next theorem.

Theorem 3. Algorithm 2 terminates within t+3 phases exchanging O(tn2m logm)
messages. The computed consensus ranking satisfies the lower bounds from Sec-
tion 5.2 and Pareto -Validity.

6 Discussion and Future Work

In this paper we introduced a new Byzantine agreement problem which extends
binary Byzantine agreement to rankings. We showed that rules for choosing a
consensus ranking in voting theory fit well with requirements from Byzantine
agreement. We further considered a special voting rule, the Kemeny median, for
which we provided an optimal Byzantine agreement protocol that can tolerate
up to t < n/3 Byzantine nodes. We do not claim to have chosen the best voting
rule at this point, since such a rule simply does not exist due to impossibility
results in voting theory. Instead, we think of our results as an inspiration to
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consider a larger pool of voting rules, such as approval voting, the Godgson’s
rule, and many others.
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